科学研究

化工学院黄文欢团队在《Advanced Functional Materials》上发表MOF基低硅负极研究工作

2024-02-01 11:01 文/化工学院 姬占有 图/黄文欢 点击:[]

近日,陕西科技大学化学与化工学院黄文欢教授团队在Advanced Functional Materials期刊发表题为“Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode”的研究论文,博士生陈卓为论文的第一作者。

由于电动汽车和设备的能源需求严峻,开发高能量、长循环寿命的锂离子电池具有重要意义。硅作为锂电池的新一代负极材料,以其高达约4200 mAh g1的理论比容量和丰富的自然资源而备受关注。然而,硅在充放电多孔过程中不可避免的剧烈体积膨胀(≈300%)不仅削弱了电极和集流体的接触,还导致了不稳定的固体电解质间相(SEI)的形成。不可逆的容量退化和电池寿命的缩短被认为是阻碍其商业化的主要限制。

一般情况下,采用碳壳包覆硅纳米颗粒的方式来减轻硅膨胀问题。然而,在电池循环过程中,电解质离子必须穿透碳壳,然后与硅反应,导致动力学效果不佳。碳基质也会存在不必要的结构变化。此外,高负载硅纳米颗粒的聚集会导致硅的利用效率低,从而影响电池的长期性能。迄今为止,开发和设计高利用率的硅碳负极材料仍然是一个巨大的挑战。

鉴于此,黄文欢教授团队,采用ZnMo双金属杂化沸石咪唑酸盐框架(HZIF-ZnMo),开发和设计了一种超低4.3 wt%的硅掺杂多孔MoC材料,并进一步探索了其在高容量锂离子电池中的潜力(在0.2 A g−1下进行250次循环后,容量为976.6 mAh g−1)。研究表明,多孔MoC作为基底,不仅为锂离子的快速扩散提供了连续的通道,还使超低含量的硅在多孔基体中高度均匀分布,有效诱导硅在循环过程中实现自身容量的最大利用,研究成果发表于学术期刊Advanced Functional Materials,题为“Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode”

文章要点

点一:利用HZIF-ZnMo合成多孔Si@MoC(p-Si@MoC)

首先,利用水热法合成了HZIF-ZnMo。随后,通过将TEOS涂覆在HZIFZnMo上制备SiO2@HZIF-ZnMo,通过将正硅酸乙酯包覆在HZIF-ZnMo上制备SiO2@HZIF-ZnMo,通过简单的热还原,构建了超低约4.3 wt%掺杂Si的MoC多孔结构。反应保留了ZnMo咪唑框架的多面体结构并促进Si在多孔MoC基体内的均匀分散。此外,为了研究Si和多孔结构在p-Si@MoC中的作用,我们还合成了多孔MoC(p-MoC)和非多孔MoC,并在后续的实验中组装成电池,进行比较。

图1 多孔Si@MoC材料设计及合成

图2 多孔Si@MoC的表征

通过X射线近边吸收光谱(XANES)和扩展X射线吸收精细结构谱(EXAFS),验证了Si掺杂在MoC基体中形成的Mo-Si键。通过密度泛函理论(DFT)的计算,揭示了多孔Si@MoC优异的电导率和电子传递能力。

要点二:超低含量掺杂有效地诱导Si在p-Si@MoC中最大容量利用率

作为锂离子电池负极材料,p-Si@MoC展现出了极小的电极/电解质界面阻抗(Rs)和电荷转移阻抗(Rct)。值得注意的是,优化后p-Si@MoC负极在250次循环后显示976.6 mAh g-1的放电容量,而p-MoC在250次循环后的放电容量为800.6 mAh g-1。根据p-Si@MoC中Si的含量(4.3 wt%)计算出硅的理论容量为180.6 mAh g-1。因此,我们认为这种独特的多孔结构可以最大限度地利用Si掺杂来提高容量,且Si的容量利用率可达97.5%。

为了进一步评估p-Si@MoC的循环稳定性,在1 A g1的电流密度下进行500圈次循环后,p-Si@MoC的可逆容量保持在485.8 mAh g1,库仑效率(CE)为98.9%。相比之下,p-MoC和MoC在500次循环后的放电容量分别为385.1和249.6 mAh g1。值得注意的是,p-Si@MoC负极的高放电容量归因于硅的掺杂和基体的多孔结构。与最近报道的不同成分和结构的硅基负极材料相比,p-Si@MoC中硅的含量更低。更重要的是,p-Si@MoC具有优异的电化学性能,但仍可与其他硅基阳极相媲美。

图3 多孔Si@MoC电池性能测试

要点三:p-Si@MoC材料促进锂离子快速动力传输及原位储锂机制

p-Si@MoC材料引起具有的良好的孔结构和高度均匀分散的Si,使p-Si@MoC在重复锂化/脱锂的过程中仍保持优异的结构稳定性,电极表面薄且致密。MoC、p-MoC和p-Si@MoC电极在经历150次循环前后的电化学阻抗也证明了p-Si@MoC具有优异的结构稳定性。对比循环前后多孔Si@MoC负极变化,膨胀率仅有11.6%。因其独特的多孔结构,在整个过程中与硅保持着密切接触,有效地吸收了循环过程中硅颗粒增加的体积,减轻体积膨胀。此外,对电化学动力学过程进行研究,p-Si@MoC负极较高的锂离子扩散系数(6.44×107 cm2 s1)证实了多孔MoC构建的提供丰富的孔隙和离子开放通道,有利于电解液的渗透和锂离子的扩散。

原位XRD测试结果显示,显示了在放电和充电过程中多孔MoC基体变化(MoC + xLi+ + xe → Mo + LixC,放电过程中的反应)和LixSi的形成与解离,与CV曲线一致,证实了电极在循环过程中电化学的高度可逆性。

图4 多孔Si@MoC电极表面稳定性研究

图5 多孔Si@MoC电极动力传输及原位储锂机制

文章链接

Ultra-Low 4.3 wt% Silicon Thermal Reducing Doped Porous Si@MoC as Highly Capable and Stable Li-Ion Battery Anode

Adv. Funct. Mater. 2024, 2314176

https://doi.org/10.1002/adfm.202314176

附:团队近三年部分代表性论文:

[1] W. Huang*, S. Wang, X. Zhang, Y. Kang, H. Zhang*, N. Deng, Y. Liang, H. Pang*, Universal F4-modified Strategy on Metal Organic Framework to Chemical Stabilize PVDF-HFP as Quasi-Solid-State Electrolyte, Advanced Materials, 2023, 35(52), 202310147.

[2] Z. Chen, X. Lu, Y. Zhang,* Y. Kang, X. Jin,* X. Zhang, Y. Li, H. Wang,* and W. Huang*, Ultra-low 4.3 wt% silicon thermal reducing doped porous Si@MoC as highly capable and stable Li-ion battery anode, Advanced Functional Materials, 2024, DOI:10.1002/adfm.202314176.

[3] X. Zhang, Q. Su*, G. Du, B. Xu, S. Wang, Z. Chen, L. Wang, W. Huang*, H. Pang*, Stabilizing Solid-state Lithium Metal Batteries through In Situ Generated Janus-heterarchical LiF-rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes, Angew Chem. Int. Ed., 2023, 62(39), 202304947.

[4] W. Huang, C. Su, C. Zhu, T. Bo, S. Zuo, W. Zhou, Y. Ren, Y. Zhang, J. Zhang, M. Rueping*, H. Zhang*, Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production, Angew Chem., Int. Ed., 2023, 62 (25), 202304634.(VIP paper

[5] W. Huang,* X. Zhang, J. Chen, Q. Qiu, Y. Kang, K. Pei, S. Zuo, and R. Che*, High-density Nanopore Confined Vortical Dipoles and Magnetic Domains on Hierarchical Macro/Meso/Micro/Nano Porous Ultra-Light Graphited Carbon for Adsorbing Electromagnetic Wave, Advanced Science, 2023, 2303217.

[6] X. Zhang, W. Huang*, L. Yu, M. García-Melchor, D. Wang, L. Zhi* and H. Zhang* Enabling Heterogeneous Catalysis to Achieve Carbon Neutrality: Directional Catalytic Conversion of CO2 into Carboxylic Acids, Carbon Energy, 2023, e362.

[7] W. Huang, T. Bo, S. Zuo, Y. Wang, J. Chen, S. Ould‐Chikh, Y. Li, W. Zhou*, J. Zhang, H. Zhang*, Surface decorated Ni sites for superior photocatalytic hydrogen production, Susmat, 2022, 2(4) 466-475.

[8] C. Feng, Y. Ren, F. Razq, W. Huang*, H. Zhang*, An innovative and ingenious strategy to construct single-atom catalyst for photocatalytic methane conversion, Matter, 2022, 5, 3086–3111.

[9] M. Sun, W. Cao, P. Zhu, Z. Xiong, C. Chen, J. Shu*, W. Huang*, Fan Wu*, Thermally tailoring magnetic molecular sponges through self-propagating combustion to tune magnetic-dielectric synergy towards high-efficiency microwave absorption and Attenuation, Advanced Composites and Hybrid Materials, 2023, 6: 54.

[10] Y. Ren, W. Huang*, M.A. Alsuhami, H. Zhang, J. Ye*, Subsurface engineering for efficient photocatalytic water splitting, Chem Catalysis, 2023, 3(8), 100707.

[11] P. Li, Z. He, X. Li, W. Huang*, and X. Lu*, Fullerene-Intercalated Graphitic Carbon Nitride as a High-Performance Anode Material for Sodium Ion Batteries. Energy & Environmental Materials, 2022, 5: 608–616.

[12] W. Huang*, Q. Qiu, X. Yang, S. Zuo, J. Bai, H. Zhang*, K. Pei and R. Che*, Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly Efficient Magnetic Wave Adsorption. Nano-Micro Letters, 2022, 14(1): 96.

[13] W. Huang*, W. Gao, S. Zuo, L. Zhang, K. Pei, P. Liu and R. Che*, and H. Zhang*, Hollow MoC/NC Sphere for Electromagnetic Wave Attenuation: Direct Observation of Interfacial Polarization on Nanoscale Hetero-interfaces. Journal of Materials Chemistry A, 2022, 10: 1290-1298.(杂志封面Outside Front Cover)(高被引论文

[14] Y. Kang, J. Tang, J. Chen, M. Song, W. Wang, T. Liu, W. Huang*, “Appropriate dressing” non-fluorination strategy: Dopamine coating CuSiF6 framework derived F-rich SiC/CuF2@C electromagnetic wave absorber, Carbon, 2024, 218, 118690.

[15] W. Huang*, J. Chen, W. Gao, L. Wang, P. Liu*, Y. Zhang, Z. Yin, Y. Yang, “Host-Guest” crystalline Mo/Co-framework induced phase-conversion of MoCx in carbon hybrids for regulating absorption of electromagnetic wave, Carbon, 2022, 197: 129-140.

[16] W. Huang*, S. Wang, X. Yang, X. Zhang, Y. Zhang, K. Pei, R. Che*, Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption, Carbon, 2022, 195: 44-56.

[17] Y. Zhang, J. Chen, C. Su, K. Chen, H. Zhang, Y. Yang, W. Huang*, Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors, Nano Research, 2022, 15(10), 8983-8990.

[18] W. Huang*, X. Li, X. Yang*, H. Zhang, P. Liu, Y. Ma, and X. Lu, CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst. Chemical Engineering Journal, 2021, 420: 127595.

[19] Y. Li, X. Jin*, Y. Ma, L. Ma, J Liu, P. Zhu, Z. Deng, H. Zhou, W Chen, W. Huang*, Functional decoration on a regenerable bifunctional porous covalent organic framework probe for the rapid detection and adsorption of copper ions, Rare Metals, 10.1007/s12598-023-02476-w.

[20] Y. Zhang, J. Chen, F. Razq, C. Su, X. Hou, W. Huang*, and H. Zhang*, Polyoxometalate-incorporated host-guest framework derived layered double hydroxide composites for high-performance hybrid supercapacitor, Chinese Journal of Chemistry, 2023, 41, 75-82. (杂志封面Outside Front Cover

[21] X. Yang, W. Gao, J. Chen, X. Lu, D. Yang, Y. Kang, Q. Liu, Y. Qing, and W. Huang*, Co-Ni Electromagnetic Coupling in Hollow Mo2C/NC Sphere for Enhancing Electromagnetic Wave Absorbing Performance, Chinese Journal of Chemistry, 2023, 41, 64-74.

[22] W. Huang*, X. Li, X. Yang*, X. Zhang, H. Wang, H. Wang, The recent progress and perspectives on the metal- and covalent- organic frameworks based solid-state electrolytes for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5 (9): 3593-3613.

新闻小贴士:

黄文欢,主要从事多氮唑杂化框架的设计合成,能源存贮及转化、电磁波吸收屏蔽、固态电池关键材料的应用研究。入选“2023年度全球前2%顶尖科学家榜单”,陕西省特支计划-青年拔尖人才、陕西省“科学家+工程师”创新团队首席科学家、陕西省科技新星,近年来主持国家项目2项、省部级各类科研项目11项、教学项目4项,获得陕西省高校科学技术奖一等奖(第1完成人)1项,陕西省人才计划项目4项。在Angew Chem. Int. Ed.、Advanced Materials、Advanced Functional Materials、Advanced Science、Nano-Micro Letters、Carbon Energy、Matter、Journal of Materials Chemistry A、Energy & Environmental Materials、Chemical Engineering Journal等国际期刊上发表SCI论文50余篇,其中受邀撰写综述6篇,高被引论文7篇,热点论文2篇。授权国家发明专利10余件,其中4件实现企业转化。曾受邀请在国内外学术会议上作报告20余次,媒体转载相关研究成果20余次。组织学生参加“挑战杯”课外学术科技竞赛获得省级二等奖2项、三等奖1项,获得陕西省第六届研究生创新成果展省级一等奖1项,省级创新基金1项;培养研究生获得“优秀毕业生”、“优秀硕士毕业论文”、“国家奖学金”、“研究生高水平科研成果奖励”等。

(核稿:黄文欢 编辑:王舒婷)

上一条:物理学院许并社教授团队在《ACS Nano》上发表最新研究成果 下一条:我校强涛涛教授承担的两项国家标准和一项行业标准正式发布

Baidu
map